Skip to contents

Load libraries.

library(eDASH)
#> Registered S3 method overwritten by 'quantmod':
#>   method            from
#>   as.zoo.data.frame zoo
#> Warning: replacing previous import 'dplyr::summarise' by 'plyr::summarise' when
#> loading 'eDASH'
library(ggplot2)

Preliminary inspection of the dataset.

df <- eDASH::data
head(df)
#>             Date_Time Weekday Month ToU Total_Power Chiller Hglobal Text
#> 1 2015-04-01 00:00:00     Mer   Apr F23       184.8     2.8     0.2 18.5
#> 2 2015-04-01 00:15:00     Mer   Apr F23       162.4     2.8     0.1 18.4
#> 3 2015-04-01 00:30:00     Mer   Apr F23       186.8     2.8     0.2 18.3
#> 4 2015-04-01 00:45:00     Mer   Apr F23       164.8     2.8     0.2 18.1
#> 5 2015-04-01 01:00:00     Mer   Apr F23       179.6     2.8     0.3 18.1
#> 6 2015-04-01 01:15:00     Mer   Apr F23       175.2     2.8     0.3 17.9

Plot distributions

ggplot(df)+
  geom_histogram(aes(x = Total_Power))
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.